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ABSTRACT:In recent years, optimization 

methods have been widely and effectively applied 

in economics, engineering, transportation, 

information technology, and many other scientific 

disciplines. This article will systematize a real-life 

model that needs the help of Mathematics to solve 

production cost problems in business to clarify the 

relationship between Mathematics and practice 
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I. INTRODUCTION 
Currently, the direction of scientific 

research to serve practice and solve problems 

arising in practice is of great interest. One of the 

most interested directions is the field of 

mathematical optimization [1-33].When planning 

production and design based on optimization 

principles, it will save costs in terms of capital, raw 

materials, time and labor while increasing 

efficiency, productivity and quality of work. 

Therefore, the problem is to model real-world 

problems into optimization problems. Then, the 

results of the optimization problem will give us the 

most reasonable production plan in practice. 

 

II. METHODOLOGY 

In this paper, we consider the production 

of cast iron not as smelting it from a mixture of 

different materials but as a mixture of metals of 

different chemical composition, each of which is 

considered to be smelted from a kind of furnace 

material (Furnace material is understood as a 

starting product for metallurgy). In the iron-

smelting industry, choosing whether different 

furnaces determines the use of different iron-

smelting technologies . In the composition of the 

furnace materials, there will be iron ores with other 

types such as rust, martin kiln slag, scrap steel… 

Choose whether different furnace materials will 

produce different chemical compositions of 

smelted iron. For a quality cast iron product, the 

percentages of sulfur, manganese, phosphorus and 

some other elements should not exceed a 

predetermined value. 

In fact, in the cast iron industry, the 

manufacturer wants to find out whether the furnace 

is optimal, it means the composition of the furnace 

materials, so that the production cost is the 

cheapest while still ensuring the requirements for 

the composition. chemistry. Now, we will build a 

mathematical model for this problem. 

Consider a factory iron plant with a total 

of n furnaces. We sign: 

jx  is the part of cast iron smelted from the j-th 

furnace material, 1..j n ( as a percentage in a ton 

of cast iron). Then 
1

1
n

j

j

x


  

ija  is the percentage of the i-th element ( sulfur, 

manganese, phosphorus) can be produced from the 

j-th furnace material and ia  is the maximum 

allowable percentage of the i-th element in the 

finished cast iron. Since the total percentage of 

element i in all furnaces does not exceed the 

maximum allowable percentage, it is necessary to 

ensure the following conditions: 
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jd  is the maximum part of iron that can be smelted 

from the j-th furnace material, 1..j n . So that 

0 j jx d  . 

jc  is the production cost for one tonne of cast iron 

assuming smelting from the j-th furnace material, 
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1..j n . Then the total production cost of the 

factory is 
1

n

j j

j

c x


 . 

So the mathematical model for this 

problem is : 
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Solving this problem, we will determine 

the set of solutions  1 2, ,..., nx x x  determine the 

part smelted iron from the furnaces so that when 

choosing this option, the plant will have the lowest 

cost while still ensuring the requirements for the 

chemical composition of the finished cast iron. 

 

III. CONCLUSION 
The paper presents a method application 

of the optimization problem for the choosing 

furnace materials for iron smelting. This further 

elucidates the two-way intimate relationship 

between mathematics and practice and the 

important role of mathematics in practice. In the 

future, the author's follow-up studies will carry out 

research on optimization for the processes 

occurring in the engineering process. 
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